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I. MODEL PREDICTIVE CONTROL

We consider the discrete-time stochastic dynamical
system

xt+1 ⇠ f (xt,ut) (1)

xt+1 ⇠ f⇠ (xt,ut) (2)

xt+1 ⇠ f⇠ (xt, ut) (3)

xt+1 ⇠ f⇠ (xt, ut) (4)

where at time t, the system state is denoted by xt 2

Rn and the control input as ut 2 Rm. The stochastic
transition map f : Rn

⇥ Rm
! Rn randomly produces

the subsequent state xt+1 and this state is accompanied
by an instantaneous cost c(xt,ut).
Over a time horizon H , we define a control trajectory
as a sequence of control inputs beginning at time t

: Ut , (ut,ut+1, ...,ut+H�1). Similarly, we define
the state trajectory: Xt , (xt,xt+1, ...,xt+H�1,xt+H).
The total cost incurred over H timesteps can then be
chosen as

C(Xt, Ut) = cterm(xt+H) +
H�1X

h=0

c(xt+h,ut+h), (5)

U : (u0, u1, ... , uT�1) (6)

X : (x0, x1, ... , xT ) (7)

✓ : (✓0, ✓1, ... , ✓T�1) (8)

⇡✓ :
�
⇡✓0 , ⇡✓1 , ... , ⇡✓T�1

�
(9)

⇡✓ = p✓(u | x) (10)
(11)

⇡✓t
= p✓t(ut | xt) (12)

(13)
⇡✓t

= p✓t(ut) (14)

C(X , U) = cterm(xT ) +
T�1X

t=0

c(xt, ut), (15)

✓⇤ = argmin
✓

E⇡✓,f⇠

h
C(X ,U)

i
(16)

where cterm(·) is the terminal cost.
As in [1], we define an instantaneous feedback policy,
⇡✓t

(xt), as a parameterized probability distribution
p(ut|xt; ✓t) that we use to generate a control input at
time t given the xt, i.e., ut ⇠ ⇡✓t

(xt), where ✓t 2 ⇥,

the set of feasible parameter values. MPC describes the
process of finding the optimizal, time-indexed sequence
of policy parameters ✓t , (✓t, ✓t+1, ..., ✓t+H�1),
which determine the sequence of instantaneous feedback
policies ⇡✓t

,
�
⇡✓t

,⇡✓t+1 , ...,⇡✓t+H�1

�
.

At each time step, we must find ✓t, the parameters that
define the optimal policy. We can do this by defining
a a statistic J(·) on cost C(Xt, Ut) where the minimal
J(·) occurs at the optimal ✓t.
In real-world situations, the true dynamics function f is
often unavailable, and is commonly estimated using a
parameterized function f̂⇠, with ⇠ being the parameters
of the dynamics model. As such, we define the surrogate
loss function Ĵ(⇡✓; xt) = E⇡✓,f̂⇠

h
C(Xt, Ut)

i
. For

each MPC-step, the optimal decision is defined ✓t =
argmin✓ Ĵ(⇡✓;xt) parameterizes the optimal policy
⇡✓t

, from which we can sample a new control value for
the first timestep. : ut ⇠ ⇡✓t

(xt) = p(ut|xt; ✓t). This
is then executed on the physical system to generate the
next state value: xt+1 ⇠ f(xt,ut).

II. BAYESIAN MODEL PREDICTIVE CONTROL

A. MPC as Bayesian Inference
Optimal control can be framed as Bayesian inference
by considering the distribution over parameters ✓. Using
Bayes rule, the conditional distribution of ✓ given cost
C and state xt can be expressed as:

pt(✓ |C; ⇠, xt) =
pt(C |✓; ⇠, xt) pt(✓; xt)R
pt(C |✓; ⇠, xt) pt(✓; xt) d✓

,

(17)
where explicit dependence on state xt is included
for generality. We define the likelihood function
pt(C |✓; ⇠, xt) to be the marginal probability over all
possible control and state trajectories:

pt(C |✓; ⇠, xt) =Z Z
p(C |Xt, Ut) p(Xt, Ut |✓; ⇠, xt) dUt dXt

= E⇡✓,f̂⇠

h
p(C |Xt, Ut)

i
, (18)

where p(C |Xt, Ut) is the likelihood of cost C given
observed trajectories, and p(Xt, Ut |✓; ⇠, xt) is the joint
probability of state-control trajectories, conditioned on
parameters ✓ and assumed dynamics model f̂⇠ =
p⇠(xt+1|xt,ut). In the discrete-time case, the joint
probability can be factorized as

p(Xt, Ut |✓; ⇠, xt) =
H�1Y

h=0

p⇠(xt+h+1|xt+h,ut+h)⇡✓h
(xt+h) (19)

where the current state is observed.

Particle Variational Inference

Online Model Adaptation  
(RSS ’21)

Structured and distributed 

approaches for robot  

Perception and Control.

sashalambert.github.io 

alambert6@gatech.edu 

Google Scholar 

improve prediction of directional force measurements, the spatial structure and surface geometry
of the sensor was encoded directly into the architecture of the network used for the model. The
proposed method was compared to the current state-of-the-art methods for force estimation using
the same tactile-sensing device, including both analytic [49] and learned [50] baselines.

3.1 Force Prediction for Manipulation

Figure 7: The BioTac sensor [51] consists of a rigid
core, surrounded by a weakly conductive gel and a
high friction elastomeric skin. Changes in impedance
caused by fluid deformation during contact are cap-
tured by an array of 19 electrodes. However, these
measurements must be converted into meaningful
force values for many manipulation tasks.

Using the tactile sensor shown in Figure 7, we define
the problem of estimating the contact force f 2 R3

with reference to the sensor frame B, given sensor
readings z, contact point sc, and and the surface
normal sn. In order to learn an accurate model
which can generalized to di↵erent tasks, the train-
ing dataset must cover a wide range of forces, both
in magnitude and direction. As such, ground-truth
data was first collected for primitive contact modes,
such as “pressing” and “rolling” of the finger against
a rigid surface. This was accomplished by fixing the
sensor to a force/torque (FT) plate, and manually in-
teracting with rigid objects. This human-in-the-loop
strategy ensured that these types of contact were ap-
plied and measured across the entirety of the sensor
surface, a process which would otherwise be di�cult
to automate. The resulting data source is referred to as rigid-ft. To further capture a wide variety,
and quantity, of contact forces and orientations, the tactile sensor was mounted onto a robotic
hand-arm system [48]. The manipulator was subsequently programmed to interact with a ball-and-
stick mounted to the FT plate (producing the aptly-named dataset, ball-ft). Finally, measurements
were collected during a planar-pushing task for a variety of trajectories (planar-pushing), where
the ground-truth force values were inferred from a physics-based model of pushing mechanics, us-
ing estimated friction parameters. This three-phase data-collection process was used to produce a
dataset consisting of over 140k measurements.

3.2 The Tactile Sensor Model: Design & Evaluation

The TacNet sensor model (depicted in Figure 8) is uniquely designed to leverage spatial relations
of the input signal. The network architecture incorporates a voxel-grid embedding of the 3D
locations for each sensor electrode, with physical arrangement shown in Fig. 7. This permits a
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Figure 8: TacNet: a force-prediction network architecture with integrated spatial encoding of sensory input [48].
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In order to make learning and inference for robotics more
data-efficient and scalable, we should integrate domain knowl-
edge into our representations when possible [1], with careful
consideration of inductive biases. Luckily, robotics problems
often exhibit rich structure and known dependencies which
can be exploited in different ways, particularly when learning
predictive models for inference and control. Such examples
include system appearance and geometry [2, 3], kinematics [4],
and physics-based priors [5, 6]. A large part of my research
has been motivated by this notion, where I have addressed
the problem of embedding structure in perceptual models for
both visual and tactile sensing modalities [3, 7]. This includes
a framework for cross-modal compensation and efficient in-
ference in environments with severe occlusion [8].

More recently, I have turned to the question of efficient
representations for control and planning problems. Sampling-
based approaches to model predictive control (MPC) have
risen in popularity, largely due to their speed and ease
of implementation in model-based reinforcement learning
schemes, as well as their success in noisy real-world envi-
ronments [9, 10]. These methods resort to open-loop, Monte
Carlo (MC) sampling for estimating expected costs over
finite-length, stochastic trajectories using simple uni-modal
control distributions [11, 12]. This can make it challenging
to resolve multi-modal, complex posteriors which might arise
from non-convexity of the optimization problem (ex. due to
obstacles) or state uncertainty (ex. from localization). My work
has focused on leveraging non-parametric representations for
optimal control distributions in MPC and planning problems.
These are distributed, in that they consist of a collection of
unique parameters which require local evaluation, but interact
in a de-centralized way. By casting optimization as a Bayesian
inference problem and leveraging recent developments in
particle-based Variational Inference (ParVI), sample-efficient
control schemes can be achieved by maintaining a system of
interacting particles over a distribution of control parameters.

With the growth in availability of on-board GPUs, we
should approach online control and inference with paralleliza-
tion in mind, and extend ideas from the statistics community
to efficiently handle high-dimensional uncertainty common in
robotics. I advocate that applying non-parametric approaches
to online learning and prediction will allow systems to become
more robust and adaptive in noisy and dynamic environments.

I. FLOW-BASED MODELS FOR VISUAL PREDICTION

Predictive models for visual data, such as image frames
or video, define a mapping from a latent space to pixel-level

Simulated Rollouts System

Fig. 1: Particle-based VI-MPC for a 7-dof reaching task. Expected behavior of
each particle is depicted by a uniquely colored set of end-effector trajectories.

observations. They have been used for learning unsupervised
visuo-motor policies [2, 13], visual task planning [14], and
model-predictive control [15–17]. This has demonstrated the
utility of defining desired visual states and trajectories directly
in observation space, for both manipulation and navigation
tasks. However, prediction using purely parameterized deep
networks, such as de-convolutional networks, VAEs or GANs,
often suffers in quality (ex. overly blurry images) or requires a
large amount of data to train on. In [3], we devised a method
for predicting photo-realistic observations in robot manipula-
tion by leveraging a key fact: the geometry and kinematics
of the system is effectively constant, and the configuration
space is a well-defined closed set. By collecting key-frame data
of different robot poses, a flow-based transformation can be
learned to generate novel viewpoints from nearest-neighbour
images. This can then be used for visual prediction of desired
joint-space trajectories, with the added benefit of detecting
occlusions in cluttered scenes.

II. STRUCTURED MODELS FOR TACTILE SENSING

The advent of sophisticated tactile sensors [18] has provided
increased sensitivity to forces induced by contact dynamics,
allowing for a diversity of applications in robotics ranging
from object class and pose identification, surface texture
reasoning, and slip detection [19–24]. Yet, the output signals
of these devices are often noisy and difficult to interpret.
There has been a lack of accurate, generalizable models
which can correctly map raw sensory signals to useful force
information across different tasks. Providing reliable, contin-
uous measurements on force direction and magnitude could
allow for improved robustness in controller design used in
contact-rich manipulation. We addressed these shortcomings

q* = argminqKL(q | | p)
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