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In order to make learning and inference for robotics more
data-efficient and scalable, we should integrate domain knowl-
edge into our representations when possible [1], with careful
consideration of inductive biases. Luckily, robotics problems
often exhibit rich structure and known dependencies which
can be exploited in different ways, particularly when learning
predictive models for inference and control. Such examples
include system appearance and geometry [2, 3], kinematics [4],
and physics-based priors [5, 6]. A large part of my research
has been motivated by this notion, where I have addressed
the problem of embedding structure in perceptual models for
both visual and tactile sensing modalities [3, 7]. This includes
a framework for cross-modal compensation and efficient in-
ference in environments with severe occlusion [8].

More recently, I have turned to the question of efficient
representations for control and planning problems. Sampling-
based approaches to model predictive control (MPC) have
risen in popularity, largely due to their speed and ease
of implementation in model-based reinforcement learning
schemes, as well as their success in noisy real-world envi-
ronments [9, 10]. These methods resort to open-loop, Monte
Carlo (MC) sampling for estimating expected costs over
finite-length, stochastic trajectories using simple uni-modal
control distributions [11, 12]. This can make it challenging
to resolve multi-modal, complex posteriors which might arise
from non-convexity of the optimization problem (ex. due to
obstacles) or state uncertainty (ex. from localization). My work
has focused on leveraging non-parametric representations for
optimal control distributions in MPC and planning problems.
These are distributed, in that they consist of a collection of
unique parameters which require local evaluation, but interact
in a de-centralized way. By casting optimization as a Bayesian
inference problem and leveraging recent developments in
particle-based Variational Inference (ParVI), sample-efficient
control schemes can be achieved by maintaining a system of
interacting particles over a distribution of control parameters.

With the growth in availability of on-board GPUs, we
should approach online control and inference with paralleliza-
tion in mind, and extend ideas from the statistics community
to efficiently handle high-dimensional uncertainty common in
robotics. I advocate that applying non-parametric approaches
to online learning and prediction will allow systems to become
more robust and adaptive in noisy and dynamic environments.

I. FLOW-BASED MODELS FOR VISUAL PREDICTION

Predictive models for visual data, such as image frames
or video, define a mapping from a latent space to pixel-level
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Fig. 1: Particle-based VI-MPC for a 7-dof reaching task. Expected behavior of
each particle is depicted by a uniquely colored set of end-effector trajectories.

observations. They have been used for learning unsupervised
visuo-motor policies [2, 13], visual task planning [14], and
model-predictive control [15–17]. This has demonstrated the
utility of defining desired visual states and trajectories directly
in observation space, for both manipulation and navigation
tasks. However, prediction using purely parameterized deep
networks, such as de-convolutional networks, VAEs or GANs,
often suffers in quality (ex. overly blurry images) or requires a
large amount of data to train on. In [3], we devised a method
for predicting photo-realistic observations in robot manipula-
tion by leveraging a key fact: the geometry and kinematics
of the system is effectively constant, and the configuration
space is a well-defined closed set. By collecting key-frame data
of different robot poses, a flow-based transformation can be
learned to generate novel viewpoints from nearest-neighbour
images. This can then be used for visual prediction of desired
joint-space trajectories, with the added benefit of detecting
occlusions in cluttered scenes.

II. STRUCTURED MODELS FOR TACTILE SENSING

The advent of sophisticated tactile sensors [18] has provided
increased sensitivity to forces induced by contact dynamics,
allowing for a diversity of applications in robotics ranging
from object class and pose identification, surface texture
reasoning, and slip detection [19–24]. Yet, the output signals
of these devices are often noisy and difficult to interpret.
There has been a lack of accurate, generalizable models
which can correctly map raw sensory signals to useful force
information across different tasks. Providing reliable, contin-
uous measurements on force direction and magnitude could
allow for improved robustness in controller design used in
contact-rich manipulation. We addressed these shortcomings



in [7] using a large-scale data-driven approach, where training
examples were collected across different contact domains in
order to learn a tactile sensor model. To improve prediction
of directional force measurements, the spatial structure and
surface geometry of the sensor was encoded directly into
the architecture of the network used for the model. The
proposed method was shown to outperform current state-of-
the-art methods for force estimation using the same device,
including both analytic [25] and learned [26] baselines.

III. JOINT INFERENCE FOR MULTI-MODAL SENSING

Having used different sensor modalities in my work, a
natural extension was to tackle the question of how to combine
tactile and visual measurements for efficient inference and
state estimation. Occlusion is a common issue for visual
object tracking in robot manipulation, particularly in cluttered
scenes or during in-hand re-grasping. Tactile sensing offers
an additional modality that can compensate for such partial
observability in contact-rich tasks. Likewise, estimation of
contact-point and force normals can be informed by visually-
tracked poses and knowledge of system dynamics. Inspired
by previous work [27, 28], we leveraged a factor-graph rep-
resentation developed in the SLAM community for multi-
modal sensor fusion [29]. In [8], we describe a framework
for joint inference over visuo-tactile measurements which
integrates geometric and physics-based priors (such as quasi-
static mechanics) to minimize state uncertainty during task ex-
ecution. This was demonstrated to improve both contact-force
and pose estimation for non-prehensile and under-actuated
object manipulation in heavily occluded scenes, combining
observations from tactile/force-torque sensors and depth-based
object tracking.

IV. VARIATIONAL INFERENCE FOR CONTROL

Approximate inference has been widely explored for
Stochastic Optimal Control and risk-sensitive, or entropy-
regularized, MPC [9, 30–33]. Solutions have typically resorted
to importance-sampling schemes using high-entropy, open-
loop control distributions [11, 12], where dense Monte-Carlo
sampling is generally required to mitigate noisy system behav-
ior. Otherwise, using narrower, low-entropy distributions can
give rise to greedy, highly optimistic action selection. This
can become problematic when considering high-dimensional
control inputs, where sample-efficiency becomes increasingly
important in resolving expected costs over finite horizons.
Instead, we can consider the full posterior distribution over
control parameters, and attempt to resolve the multi-modal
probabilities of value-weighted actions. In [34], we accom-
plish this by formulating MPC as a Variational Inference
(VI) problem. The posterior is approximated as a distributed
set of particles, where each particle constitutes a control or
decision trajectory (Fig.1). We use a recent kernel-based ParVI
algorithm, Stein Variational Gradient Descent, or SVGD [35],
to adapt the distribution in an online fashion. Favorable perfor-
mance in dealing with local minima is observed in common
robot scenarios, including manipulation and navigation. The

approach allows for gradient-based information to be derived
from differentiable cost and dynamics models, and the algo-
rithm can be trivially modified to solve motion planning tasks
for deterministic systems. In more recent work, we combine
this approach with a non-parametric filtering algorithm for
online parameter adaptation to resolve model uncertainty [36].

V. FUTURE DIRECTIONS

Going forward, I plan to use particle-based MPC to acceler-
ate reinforcement learning for continuous-control tasks. This
will specifically target actor-critic frameworks which incorpo-
rate model-based control with value-function learning [37, 38].
Generating low-variance, sample-efficient approximations of
expected rewards is crucial for efficient learning in this
context. By defining a non-parametric i.e. distributed policy
over action sequences, ParVI methods can be used for re-
solving multi-modal action distributions and improve value
estimation. They are known to be more sample efficient, and
converge faster, than classical Markov-Chain Monte Carlo
methods [39, 40]. SVGD, as a particular case of ParVI,
makes use of likelihood gradients, which has the potential
to further reduce variance by back-propagating through the
rolled-out state transitions (ex. via the re-parameterization trick
for differentiable state transitions). However, we must ensure
adequate scaling of particle dynamics to higher dimensions by
using appropriately structured and factorized kernels [41, 42].

Additionally, incorporating parameter uncertainty into
model-based reinforcement learning has been generally limited
to the episodic setting [43, 44]. To realize safe and robust
learning, we should consider how the agent manages uncer-
tainty and adapts its belief during execution. This would mean
including online parameter estimation and adaptive control for
minimizing Bayesian regret at both the continual and episodic
level [45, 46]. This could be addressed using particle-based
methods for resolving complex posterior distributions

Further, by considering a Bayesian formulation of model-
predictive control, we can incorporate priors over action spaces
in a principled way. Obtaining meaningful priors is non-
trivial. However these can be derived from expert or human
demonstrations [47, 48], learned from experience [49, 50] or
take the form of a trajectory or skill library [51]. Ideally, such
informed priors may be conditioned on the context, such as
the task and environment setting [52].

With the availability of fast, GPU-accelerated simula-
tors [53] and increasingly sophisticated methods for bridging
the sim-to-real gap [54–57], it is becoming conceivable to
employ simulators within sampling-based control and state-
estimation loops during real-time execution [58, 59]. However,
to effectively utilize such parallelized computation, we need
principled methods for resolving high-dimensional uncertainty
over actions and model parameters. This could be achieved
by considering the natural, non-Euclidean geometry induced
by system kinematics and constraints of the system [60]. By
ensuring that our sampling space lies on a known Riemannian
manifold, for example, we can improve sample efficiency by
implicitly accounting for system geometry [61].
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